Search results for " Bounded variation"

showing 10 items of 14 documents

Closure properties for integral problems driven by regulated functions via convergence results

2018

Abstract In this paper we give necessary and sufficient conditions for the convergence of Kurzweil–Stieltjes integrals with respect to regulated functions, using the notion of asymptotical equiintegrability. One thus generalizes several well-known convergence theorems. As applications, we provide existence and closure results for integral problems driven by regulated functions, both in single- and set-valued cases. In the particular setting of bounded variation functions driving the equations, we get features of the solution set of measure integrals problems.

Applied Mathematics010102 general mathematicsClosure (topology)Solution set01 natural sciencesMeasure (mathematics)010101 applied mathematicsSettore MAT/05 - Analisi MatematicaConvergence (routing)Bounded variationApplied mathematics0101 mathematicsconvergence Kurzweil-Steltjes integral measure integral equation regulated function bounded variationAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Geometric Properties of Planar BV -Extension Domains

2009

We investigate geometric properties of those planar domains that are extension for functions with bounded variation.We start from a characterization of such domains given by Burago–Maz'ya and prove that a bounded, simply connected domain is a BV -extension domain if and only if its com- plement is quasiconvex. We further prove that the extension property is a bi-Lipschitz invariant and give applications to Sobolev extension domains.

Discrete mathematicsQuasiconformal mappingMathematics::Analysis of PDEsGeometric propertySobolev spaceQuasiconvex functionExtension domains; Sobolev spaces; Functions with bounded variationPlanarSobolev spacesFunctions with bounded variationBounded functionSimply connected spaceInvariant (mathematics)Extension domainsMathematics
researchProduct

A new Cartan-type property and strict quasicoverings when p = 1 in metric spaces

2018

In a complete metric space that is equipped with a doubling measure and supports a Poincar\'e inequality, we prove a new Cartan-type property for the fine topology in the case $p=1$. Then we use this property to prove the existence of $1$-finely open \emph{strict subsets} and \emph{strict quasicoverings} of $1$-finely open sets. As an application, we study fine Newton-Sobolev spaces in the case $p=1$, that is, Newton-Sobolev spaces defined on $1$-finely open sets.

Discrete mathematicsfine Newton–Sobolev spaceProperty (philosophy)General Mathematicsta111010102 general mathematicsOpen setfine topologystrict quasicoveringType (model theory)function of bounded variationmetriset avaruudet01 natural sciencesMeasure (mathematics)Complete metric spaceCartan propertyfunktioteoria010101 applied mathematicsMetric spacemetric measure spacepotentiaaliteoria0101 mathematicsFine topologyMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

Bounded solutions to the 1-Laplacian equation with a critical gradient term

2012

General MathematicsBounded functionMathematical analysisLaplace operator1-laplacian; degenerate elliptic equations; functions of bounded variations; gradient term with natural growthMathematicsTerm (time)Asymptotic Analysis
researchProduct

Dimensional reduction for energies with linear growth involving the bending moment

2008

A $\Gamma$-convergence analysis is used to perform a 3D-2D dimension reduction of variational problems with linear growth. The adopted scaling gives rise to a nonlinear membrane model which, because of the presence of higher order external loadings inducing a bending moment, may depend on the average in the transverse direction of a Cosserat vector field, as well as on the deformation of the mid-plane. The assumption of linear growth on the energy leads to an asymptotic analysis in the spaces of measures and of functions with bounded variation.

Mathematics(all)Asymptotic analysis49J45 49Q20 74K35dimension reductionGeneral Mathematics01 natural sciencesMathematics - Analysis of PDEsTangent measures; bending moments; dimension reductionFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsScalingFunctions of bounded variationMathematicsDeformation (mechanics)Applied Mathematics010102 general mathematicsMathematical analysisTangent measures010101 applied mathematicsNonlinear systemΓ-convergenceDimensional reductionBounded variationBending momentbending momentsVector fieldMSC: 49J45; 49Q20; 74K35Analysis of PDEs (math.AP)
researchProduct

Fine properties of functions with bounded variation in Carnot-Carathéodory spaces

2019

Abstract We study properties of functions with bounded variation in Carnot-Caratheodory spaces. We prove their almost everywhere approximate differentiability and we examine their approximate discontinuity set and the decomposition of their distributional derivatives. Under an additional assumption on the space, called property R , we show that almost all approximate discontinuities are of jump type and we study a representation formula for the jump part of the derivative.

Pure mathematicsApplied Mathematics010102 general mathematicsvariaatiolaskentaCarnot-Carathéodory spaces; Functions with bounded variationType (model theory)Classification of discontinuitiesSpace (mathematics)01 natural sciencesdifferentiaaligeometria010101 applied mathematicsDiscontinuity (linguistics)Functions with bounded variationBounded variationCarnot-Carathéodory spacesJumpAlmost everywheremittateoriaDifferentiable function0101 mathematicsfunctions with bounded variationfunktiotAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Notions of Dirichlet problem for functions of least gradient in metric measure spaces

2019

We study two notions of Dirichlet problem associated with BV energy minimizers (also called functions of least gradient) in bounded domains in metric measure spaces whose measure is doubling and supports a (1, 1)-Poincaré inequality. Since one of the two notions is not amenable to the direct method of the calculus of variations, we construct, based on an approach of Juutinen and Mazón-Rossi–De León, solutions by considering the Dirichlet problem for p-harmonic functions, p>1, and letting p→1. Tools developed and used in this paper include the inner perimeter measure of a domain. Peer reviewed

Pure mathematicsGeneral MathematicsPoincaré inequalitycodimension 1 Hausdorff measure01 natural sciencesMeasure (mathematics)symbols.namesakeMathematics - Analysis of PDEsMathematics - Metric GeometryFOS: Mathematicsinner trace0101 mathematicsleast gradientMathematicsDirichlet problemDirichlet problemp-harmonicDirect method010102 general mathematicsA domainMetric Geometry (math.MG)perimeterfunction of bounded variationmetric measure spacePoincaré inequalityBounded functionMetric (mathematics)symbolsAnalysis of PDEs (math.AP)
researchProduct

The De Giorgi measure and an obstacle problem related to minimal surfaces in metric spaces

2010

Abstract We study the existence of a set with minimal perimeter that separates two disjoint sets in a metric measure space equipped with a doubling measure and supporting a Poincare inequality. A measure constructed by De Giorgi is used to state a relaxed problem, whose solution coincides with the solution to the original problem for measure theoretically thick sets. Moreover, we study properties of the De Giorgi measure on metric measure spaces and show that it is comparable to the Hausdorff measure of codimension one. We also explore the relationship between the De Giorgi measure and the variational capacity of order one. The theory of functions of bounded variation on metric spaces is us…

Pure mathematicsMathematics(all)General MathematicsApplied Mathematics010102 general mathematicsMathematical analysisBoxing inequalityCaccioppoli setDiscrete measureσ-finite measure01 natural sciencesRelaxed problemCapacitiesTransverse measure0103 physical sciencesComplex measureOuter measureHausdorff measure010307 mathematical physics0101 mathematicsBorel measureFunctions of bounded variationMathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

The Choquet and Kellogg properties for the fine topology when $p=1$ in metric spaces

2017

In the setting of a complete metric space that is equipped with a doubling measure and supports a Poincar´e inequality, we prove the fine Kellogg property, the quasi-Lindel¨of principle, and the Choquet property for the fine topology in the case p = 1. Dans un contexte d’espace m´etrique complet muni d’une mesure doublante et supportant une in´egalit´e de Poincar´e, nous d´emontrons la propri´et´e fine de Kellogg, le quasi-principe de Lindel¨of, et la propri´et´e de Choquet pour la topologie fine dans le cas p = 1. peerReviewed

Pure mathematicsProperty (philosophy)1-fine topologyGeneral MathematicsPoincaré inequalityMathematics::General Topology01 natural sciencesMeasure (mathematics)Complete metric spacefunktioteoriasymbols.namesakeMathematics - Metric GeometryFOS: Mathematics0101 mathematicsMathematicsApplied Mathematics010102 general mathematicsta111Metric Geometry (math.MG)30L99 31E05 26B30function of bounded variationfine Kellogg propertymetriset avaruudet010101 applied mathematicsMetric spacemetric measure spacequasi-Lindelöf principleChoquet propertysymbolspotentiaaliteoriaFine topology
researchProduct

Relaxation of certain integral functionals depending on strain and chemical composition

2012

We provide a relaxation result in $BV \times L^q$, $1\leq q < +\infty$ as a first step towards the analysis of thermochemical equilibria.

RelaxationStrain (chemistry)Applied MathematicsGeneral Mathematics010102 general mathematicsMathematical analysisThermodynamics02 engineering and technologyRelaxation; functions of bounded variation; quasiconvexity.01 natural sciencesquasiconvexityMathematics - Analysis of PDEsfunctions of bounded variation0202 electrical engineering electronic engineering information engineeringFOS: MathematicsRelaxation (physics)020201 artificial intelligence & image processing0101 mathematicsPhysics::Chemical PhysicsChemical compositionMathematicsAnalysis of PDEs (math.AP)
researchProduct