Search results for " Bounded variation"
showing 10 items of 14 documents
Closure properties for integral problems driven by regulated functions via convergence results
2018
Abstract In this paper we give necessary and sufficient conditions for the convergence of Kurzweil–Stieltjes integrals with respect to regulated functions, using the notion of asymptotical equiintegrability. One thus generalizes several well-known convergence theorems. As applications, we provide existence and closure results for integral problems driven by regulated functions, both in single- and set-valued cases. In the particular setting of bounded variation functions driving the equations, we get features of the solution set of measure integrals problems.
Geometric Properties of Planar BV -Extension Domains
2009
We investigate geometric properties of those planar domains that are extension for functions with bounded variation.We start from a characterization of such domains given by Burago–Maz'ya and prove that a bounded, simply connected domain is a BV -extension domain if and only if its com- plement is quasiconvex. We further prove that the extension property is a bi-Lipschitz invariant and give applications to Sobolev extension domains.
A new Cartan-type property and strict quasicoverings when p = 1 in metric spaces
2018
In a complete metric space that is equipped with a doubling measure and supports a Poincar\'e inequality, we prove a new Cartan-type property for the fine topology in the case $p=1$. Then we use this property to prove the existence of $1$-finely open \emph{strict subsets} and \emph{strict quasicoverings} of $1$-finely open sets. As an application, we study fine Newton-Sobolev spaces in the case $p=1$, that is, Newton-Sobolev spaces defined on $1$-finely open sets.
Bounded solutions to the 1-Laplacian equation with a critical gradient term
2012
Dimensional reduction for energies with linear growth involving the bending moment
2008
A $\Gamma$-convergence analysis is used to perform a 3D-2D dimension reduction of variational problems with linear growth. The adopted scaling gives rise to a nonlinear membrane model which, because of the presence of higher order external loadings inducing a bending moment, may depend on the average in the transverse direction of a Cosserat vector field, as well as on the deformation of the mid-plane. The assumption of linear growth on the energy leads to an asymptotic analysis in the spaces of measures and of functions with bounded variation.
Fine properties of functions with bounded variation in Carnot-Carathéodory spaces
2019
Abstract We study properties of functions with bounded variation in Carnot-Caratheodory spaces. We prove their almost everywhere approximate differentiability and we examine their approximate discontinuity set and the decomposition of their distributional derivatives. Under an additional assumption on the space, called property R , we show that almost all approximate discontinuities are of jump type and we study a representation formula for the jump part of the derivative.
Notions of Dirichlet problem for functions of least gradient in metric measure spaces
2019
We study two notions of Dirichlet problem associated with BV energy minimizers (also called functions of least gradient) in bounded domains in metric measure spaces whose measure is doubling and supports a (1, 1)-Poincaré inequality. Since one of the two notions is not amenable to the direct method of the calculus of variations, we construct, based on an approach of Juutinen and Mazón-Rossi–De León, solutions by considering the Dirichlet problem for p-harmonic functions, p>1, and letting p→1. Tools developed and used in this paper include the inner perimeter measure of a domain. Peer reviewed
The De Giorgi measure and an obstacle problem related to minimal surfaces in metric spaces
2010
Abstract We study the existence of a set with minimal perimeter that separates two disjoint sets in a metric measure space equipped with a doubling measure and supporting a Poincare inequality. A measure constructed by De Giorgi is used to state a relaxed problem, whose solution coincides with the solution to the original problem for measure theoretically thick sets. Moreover, we study properties of the De Giorgi measure on metric measure spaces and show that it is comparable to the Hausdorff measure of codimension one. We also explore the relationship between the De Giorgi measure and the variational capacity of order one. The theory of functions of bounded variation on metric spaces is us…
The Choquet and Kellogg properties for the fine topology when $p=1$ in metric spaces
2017
In the setting of a complete metric space that is equipped with a doubling measure and supports a Poincar´e inequality, we prove the fine Kellogg property, the quasi-Lindel¨of principle, and the Choquet property for the fine topology in the case p = 1. Dans un contexte d’espace m´etrique complet muni d’une mesure doublante et supportant une in´egalit´e de Poincar´e, nous d´emontrons la propri´et´e fine de Kellogg, le quasi-principe de Lindel¨of, et la propri´et´e de Choquet pour la topologie fine dans le cas p = 1. peerReviewed
Relaxation of certain integral functionals depending on strain and chemical composition
2012
We provide a relaxation result in $BV \times L^q$, $1\leq q < +\infty$ as a first step towards the analysis of thermochemical equilibria.